Effect of edge structures on elastic modulus and fracture of graphene nanoribbons under uniaxial tension
نویسندگان
چکیده
Qiang Lu and Rui Huang Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, USA ABSTRACT Based on atomistic simulations, the nonlinear elastic properties of monolayer graphene nanoribbons under quasistatic uniaxial tension are predicted, emphasizing the effect of edge structures (armchair and zigzag, without and with hydrogen passivation). The results of atomistic simulations are interpreted within a theoretical framework of thermodynamics, which enables determination of the nonlinear functions for the strain‐dependent edge energy and the hydrogen adsorption energy, for both zigzag and armchair edges. Due to the edge effects, the initial Young’s modulus of graphene nanoribbons under infinitesimal strain varies with the edge chirality and the ribbon width. Furthermore, it is found that the nominal strain to fracture is considerably lower for armchair graphene nanoribbons than for zigzag ribbons. Two distinct fracture mechanisms are identified, with homogeneous nucleation for zigzag ribbons and edge‐controlled heterogeneous nucleation for armchair ribbons. Hydrogen passivation of the edges is found to have negligible effect on the mechanical properties of zigzag graphene nanoribbons, but its effect is more significant for armchair ribbons.
منابع مشابه
Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension
Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of ...
متن کاملNonlinear Mechanical Properties of Graphene Nanoribbons
Based on atomistic simulations, the nonlinear elastic properties of monolayer graphene nanoribbons under quasistatic uniaxial tension are predicted, emphasizing the effect of edge structures (armchair and zigzag, without and with hydrogen passivation). The results of atomistic simulations are interpreted using a theoretical model of thermodynamics, which enables determination of the nonlinear f...
متن کاملThe size effect in mechanical properties of finite-sized graphene nanoribbon
Size effect in mechanical behavior of finite-sized graphene nanoribbons (GNRs) under uniaxial tension is studied using Molecular Dynamics (MD) simulations. The size effect and aspect ratio effect are significant in zigzag GNRs (ZGNRs), while their influence on the mechanical behavior of armchair GNRs (AGNRs) is negligible. For square shaped ZGNRs of increasing size, the elastic modulus increase...
متن کاملEffect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation
Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...
متن کاملA Novel Method for Considering Interlayer Effects between Graphene Nanoribbons and Elastic Medium in Free Vibration Analysis
A complete investigation on the free vibration of bilayer graphene nanoribbons (BLGNRs) mod-eled as sandwich beams taking into account tensile-compressive and shear effects of van der Waals (vdWs) interactions between adjacent graphene nanoribbons (GNRs) as well as between GNRs and polymer matrix is performed in this research. In this modeling, nanoribbon layers play role of sandwich beam layer...
متن کامل